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Abstract

This internship report is meant to work as a beginner’s introduction to the
simulation of MRI and PC-MRI. More precisely to the use of radial trajec-
tories for filling the k-space over the more traditional Cartesian ones when
looking to reduce errors induced by motion. It presents the theory behind an
MRI and the sequences that are used nowadays in medical imaging. Then
there are some examples to illustrate how an MRI and a PC-MRI work. The
first one is a more general example, to show how a normal MRI PC-MRI
works and what are the normal results that should be expected. The second
one is used to accentuate the relation between a sequence and the k-space
and how we can choose either one to produce the other. The last one consists
on an introduction of motion correction techniques that can be used in radial
trajectories.

1



Contents

1 Introduction 3
1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2 Objectives and overview . . . . . . . . . . . . . . . . . . . . . 5

1.2.1 Objectives . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.2.2 Overview . . . . . . . . . . . . . . . . . . . . . . . . . 5

2 MRI Theory 7
2.1 Physics background . . . . . . . . . . . . . . . . . . . . . . . . 7

2.1.1 The phenomenon of nuclear magnetic resonance . . . . 7
2.1.2 NMR and Bloch equations . . . . . . . . . . . . . . . . 8
2.1.3 NMR signal . . . . . . . . . . . . . . . . . . . . . . . . 13

2.2 Phase-contrast imaging . . . . . . . . . . . . . . . . . . . . . . 20

3 Testing and manipulating MRI sequences 23
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.2 Python solver example . . . . . . . . . . . . . . . . . . . . . . 23
3.3 Obtaining a sequence from a trajectory . . . . . . . . . . . . . 29

3.3.1 Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
3.3.2 Examples . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.4 Radial trajectories for motion correction . . . . . . . . . . . . 35
3.4.1 Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
3.4.2 Example . . . . . . . . . . . . . . . . . . . . . . . . . . 38

4 Discussion and moving forward 41
4.1 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
4.2 Moving forward . . . . . . . . . . . . . . . . . . . . . . . . . . 41

2



Chapter 1

Introduction

1.1 Motivation

Magnetic resonance imaging (MRI) is a non-invasive medical imaging tech-
nique used to generate pictures of the patient’s anatomy and physiological
processes inside the body. It was first presented by Paul Lauterbur [1] in
1973 and due to its importance in the medical imaging field, Paul Lauterbur
and Peter Mansfield ended up receiving a Nobel Prize in medicine in 2003
for their works regarding MRI. Such an award going for a work that stems
from other branches in Science than Medicine just showcases the importance
of approaching MRI with techniques and ideas from other fields.
The way how IRM works consists in the use of magnetic fields in order to
make certain protons in the body part of interest to emit a signal, which
corresponds to the Fourier transform of the proton density and thus it will
be contained in the reciprocal space known as k-space. This signal stored
in the k-space will then be converted by an inverse Fourier transform to the
image of the body part that we want to observe. In Figure 1.1 there are two
examples of the type of images that we can obtain when doing an MRI.
The way of filling this space has always been an interesting area of study,
and the different ways a signal moves in the k-space when filling it are known
as trajectories. Due to inherent properties that the k-space possesses, such
as the ability of performing an inverse fast Fourier transform to the signal
when it is collected in a Cartesian grid over the k-space, have made Carte-
sian trajectories the most used method in the clinic. It is a robust and well
established method for which techniques have already been developed over
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(a) Normal appearance of a young person’s

brain. Case courtesy of Frank Gaillard, Ra-

diopaedia.org, rID: 37605 [2]

(b) MRI showing the complete tear of the an-

terior cruciate ligament (ACL). Case cour-

tesy of Lam Van Le, Radiopaedia.org, rID:

207562 [3]

Figure 1.1: MRI examples.

the time to compensate for its shortcomings under certain circumstances.
Despite that, the study of different sampling strategies remains open and
work is still being done to find and study different methods that might work
better than the usual Cartesian sampling for some cases [4]. From those
techniques, the one that gets the most attention for its advantages over the
classical method is the radial sampling [5]. Its robustness to motion induced
artifacts in comparison to Cartesian sampling makes it already a better can-
didate when one cannot assure the patient to stay immobile (e.g. when
performing an MRI to a child or a claustrophobic patient), or when the zone
to be imaged is constantly moving (e.g. the lungs ot the heart).
Radial sampling has also been proved to be quite efficient when performing
phase contrast magnetic resonance imaging (PC-MRI) [6] [7] [8], which refers
to the techniques used while doing an MRI in order to determine flow veloc-
ities. It is usually done when the main objective is to study the blood flow
and blood vessels, in Figure 1.2 we can see some examples of PC-MRI.
During the thesis of Thomas Puiseux [11], the idea of performing an MRI
to a simulation of the blood flow in a phantom came to light, known as in
silico MRI. It was then developed during the thesis of Morgane Garreau [12].
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(a) Three-dimensional PC-MRI of the in-

tracranial vessels [9]

(b) Hemodynamics of the aorta in a healthy

patient, streamlines show a regular flow [10]

Figure 1.2: Examples of figures obtained when performing a PC-MRI

To continue to improve this technique, the next step is to try to implement
radial trajectories for the in silico MRI, to do so, a study of its advantages
over more common techniques must be done.

1.2 Objectives and overview

1.2.1 Objectives

This document is the summary of the internship under the guidance of Franck
Nicoud and Simon Mendez. The objective of the internship was to learn the
fundamentals behind MRI and to understand the work that is being done
here at IMAG on this subject to study how radial sampling techniques affect
the in silico MRI that is being done here using the Yales2BIO solver [13]
[14].

1.2.2 Overview

The second chapter is an introduction to the theory behind MRI, it presents
the ideas behind an MRI and how it works. The same is done for PC-MRI.
The third chapter presents the examples and the results obtained by running
them on the Python solver that Morgane Garreau developed for her thesis
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[12]. Firstly, there is an example in order to show how an MRI works.
Secondly, the presentation of a method used to obtain sequences from a
trajectory on the k-space, and how it is used to implement other sampling
techniques directly. Finally, a presentation of motion correction techniques
used in radial sampling and what are the results of using such techniques.
The fourth and final chapter analyzes and explain the results obtained. It
also explains what are the main goals moving forward with the internship.
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Chapter 2

MRI Theory

2.1 Physics background

2.1.1 The phenomenon of nuclear magnetic resonance

The idea of MRI relies on a phenomenon called nuclear magnetic resonance
(NMR), which was first described by Isidor Rabi in 1938 [15]. It consists
on the fact that atomic nucleus posses a non-zero nuclear spin when they
are under the effect of an external magnetic field. It has many applications
and it can be done with many different atoms, but for MRI, usually it is
performed using the hydrogen atoms in the body.
The nuclear spin I is a quantum property of each nuclear species which in the
presence of a magnetic field B0 gives rise to a magnetic moment µ with an
amplitude proportional to the nuclear spin. This magnetic moment precesses
around the axis of the magnetic field at a frequency ω0 known as the Larmor
frequency that is proportional to the magnitude B0 of the magnetic field B0,
defined as:

ω0 = γB0

With γ being the gyromagnetic ratio, a constant characteristic of each iso-
tope.
The equation describing the evolution of the magnetic moment along the
time can be described as:

dµ

dt
= γµ×B0 (2.1)

Obviously, when performing an MRI more than one hydrogen atom is excited
each time, so the study is done over a macroscopic magnetization M that is
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(a) Spins under normal conditions, they

move freely with no clear direction.

(b) Once a strong magnetic field is applied,

all the spins line up, the sum of all the lined

up spins is what creates the magnetic vector.

Figure 2.1: Scheme of the behavior of the magnetic spin under a strong
magnetic field. [16]

defined as the sum of the magnetic moment of all the atoms N that found
in a volume V . More precisely:

M =
1

V

N∑
i=1

µi (2.2)

At thermal equilibrium, the magnetic vector M0 is defined as:

M ≈ ρ0γ
2ℏ2

4kT
B0 (2.3)

Where ρ0 is the proton density per unit of volume, ℏ is the reduced Planck
constant, k is the Boltzmann constant and T is the temperature. Figure 2.1
shows a simplified scheme that explains how the spins of the atoms behave
when they are under a strong magnetic field.

2.1.2 NMR and Bloch equations

The principle of NMR relies on disrupting the precession movement of M
around B0 by applying a temporary B1(t) in the orthogonal plane. This
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first step of disrupting the precession is called excitation. Once the B1(t) is
removed, M will begin to return to its original movement, this part is called
relaxation. During the relaxation the NMR signal is measured.

Excitation

By convention, B0 is oriented along the z-axis, so B0 = B0êz, with êz being
the vector of the canonical base (êx, êy, êz) in R3, which is known as the fixed
frame of reference. So the magnetic field B1(t), by convention, occurs in the
xy-plane and is oscillating.
Since B1(t) oscillates, it appears natural that instead of working with the
fixed laboratory frame of reference , a rotating frame of reference (e′x, e

′
y, êz)

is defined. Ω = −ωêz is the rotational angular velocity vector associated with
the latter frame of reference. For any magnetic field B, combining equations
(2.1) and (2.2) gives [17]:

dM

dt
= (

dM

dt
)′ +Ω×M

=⇒ (
dM

dt
)′ =

dM

dt
+M×Ω

= γM×B+M×Ω

= γM×Beff with Beff = B+
Ω

γ

(2.4)

In the rotating frame of reference associated with the frequency ω0, B0êz =
ω0

γ

cancels out with Ω
γ
, and Beff = B1(t).

The oscillating magnetic field B1 applied during the excitation phase is called
the radio-frequency pulse (RF-pulse). In the fixed laboratory frame, this field
can be expressed asB1(t) = B1cos(ω1t)êx−B1sin(ω1t)êy. Where ω1 indicates
the precession frequency of the field B1. In the rotating frame it is:B1,x′(t)

B1,y′(t)
B1,ẑ(t)

 =

cos(ωt) −sin(ωt) 0
sin(ωt) cos(ωt) 0

0 0 1

 B1cos(ω1t)
−B1sin(ω1t)

0


=

B1cos((ω − ω1)t)
B1sin((ω − ω1)t)

0

 (2.5)

To be able to tip the magnetization vector M the RF pulse has to be applied
close to the Larmor frequency. If the on-resonance condition (e.g. ω = ω1 =
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ω0), equation (2.5) reduces to B1(t) = B1e
′
x(t).

The angle of rotation α of the magnetization vector during the excitation is
called the flip angle and is defined as α = γ

∫ trf
0

B1(t)dt, with trf indicating
the duration of the RF-pulse.

Relaxation

Once the RF-pulse is finished, the relaxation phase begins. During this phase
the magnetization vector starts to go back to its original position. This means
that the component Mz of the vector M, known as the longitudinal magne-
tization, grows again to its original value, while the Mx and My components,
known as the transversal magnetization, start to disappear.

The Bloch equations

To study the evolution of the magnetization vector, Felich Bloch proposed
a model in 1946 to describe the NMR phenomenon [18], for which he won
a Nobel prize in Physics in 1952. He introduced two constants T1 and T2

which represents the growth of the longitudinal magnetization and the decay
of the transverse magnetization, respectively. These constants depend on the
tissues and were obtained experimentally. The Bloch equations, in the fixed
laboratory frame are described as:

dM(t)

dt
= γM(t)×B(t)+

1

T1

(M0−Mz(t))êz −
1

T2

(Mx(t)êx+My(t)êy) (2.6)

WhereM0 refers to the magnitude of the longitudinal magnetization when
in thermal equilibrium.
In the rotating frame, using (2.4) gives:

dM(t)

dt
= γM(t)×Beff (t)+

1

T1

(M0−Mz(t))êz−
1

T2

(M ′
x(t)e

′
x+M ′

y(t)e
′
y) (2.7)

In the rotating frame , the expressions of M(t) and Beff (t) are:

M(t) = M ′
x(t)e

′
x +M ′

y(t)e
′
y +Mz(t)êz

Beff (t) = B0 +B1(t) +
Ω

γ

= B1cos((ω − ω1)t)e
′
x +B1sin((ω − ω1)t)e

′
y + (B0 −

ω

γ
)êz
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Assuming that the on-resonance condition is met, the Bloch equations in the
rotating frame of reference (2.6), when written in matrix form, become:

d

dt

M ′
x(t)

M ′
y(t)

Mz(t)

 =

− 1
T2

0 0

0 − 1
T2

γB1(t)

0 −γB1(t) − 1
T1

M ′
x(t)

M ′
y(t)

Mz(t)

+

 0
0
M0

T1

 (2.8)

Analytical solution for the excitation

Since the RF-pulse is of short duration, ω1 >> 1
T1
, 1
T2

is assumed. Which
means that the relaxation effects of the Bloch equations during the excitation
can be ignored, so equation (2.8) becomes:

d

dt

M ′
x(t)

M ′
y(t)

Mz(t)

 =

0 0 0
0 0 γB1

0 −γB1 0

M ′
x(t)

M ′
y(t)

Mz(t)

 (2.9)

Declaring M0 = (0, 0,M0)
T as its initial conditions we find ourselves with a

system of differential equations which we can solve, getting as solution:
M ′

x(t) = 0

M ′
y(t) = M0sin(α)

Mz(t) = M0cos(α)

(2.10)

With α being the flip angle. In Figure 2.2 we can observe the evolution of
the magnetization vector during the excitation phase.

Figure 2.2: Evolution of the transversal and magnetization vectors during the excitation

phase for a flip angle of 90º
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Analytical solution for the relaxation

As we have already stated, the relaxation phase begins when the B1 goes
back to zero, so then equation (2.8) becomes:

d

dt

M ′
x(t)

M ′
y(t)

Mz(t)

 =

− 1
T2

0 0

0 − 1
T2

0

0 0 − 1
T1

M ′
x(t)

M ′
y(t)

Mz(t)

+

 0
0
M0

T1

 (2.11)

To solve this differential equation, it is separated in the components of the
longitudinal and transversal magnetization. For that the complex represen-
tation of the transverse magnetization is introduced: M ′

xy(t) = M ′
x(t) +

iM ′
y(t) =| Mxy(t) | eiϕ(t), where | Mxy(t) | is the modulus of the transverse

magnetization and ϕ(t) indicates its angle, known as phase. As before, the
solution of the system of ordinary differential equation has its solutions de-
fined as: {

M ′
xy(t) = M ′

xy(t0)e
− t−t0

T2

Mz(t) = (Mz(t0)−M0)e
− t−t0

T2 +M0

(2.12)

Where t0 ≥ trf indicates the end of the excitation phase. Since the transverse
magnetization is a complex number, the change to the fixed laboratory frame
is immediate, just multiply the transverse magnetization by e−iω0t, obtaining:{

M ′
xy(t) = M ′

xy(t0)e
iω0te−

t−t0
T2 =| Mxy(t0) | e−i(ω0t−ϕ(t0))e−

t−t0
T2

Mz(t) = (Mz(t0)−M0)e
− t−t0

T2 +M0

(2.13)

As before, Figure 2.3 shows the evolution of the magnetization vector during
the relaxation phase.
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Figure 2.3: Evolution of the transversal and magnetization vectors during the relaxation

phase for a flip angle of 90º in the rotating frame. The T1 and T2 parameter are 250 and

70 ms respectively, they correspond to the times for fat tissue. t0 = 1ms and TR = 500ms,

which is the average duration of a TR in T1-weighted imaging.

2.1.3 NMR signal

There are many ways to work and interact with the NMR signal when doing
an MRI [17]. Here, the most basic ones are introduced.

Free Induction Decay (FID)

The most basic MRI experiment, only an RF-pulse is applied in order to
start the excitation phase and then the relaxation phase occurs. Since the
signal s(t) is proportional to the electromotive force, it is:

s(t) ∝ − d

dt

∫∫∫
V

(Mx(r, t)Br
x(r) +My(r, t)Br

y(r) +Mz(r, t)Br
z(r)d

3r (2.14)

Where Br(r) = (Br
x(r),Br

y(r),Br
z(r))

T indicates the magnetic field per unit
current that would be produced by the receiver coil (part of the MRI machine
that takes part in the signal detection) at the location r.
From (2.13) is derived:

dMxy

dt
= −(iω0 +

1

T2

) | Mxy(r, t0) | e−i(ω0t−ϕ(r,t0))e−
t−t0
T2

dMz

dt
= − 1

T1

(Mz(r, t0)−M0)e
− t−t0

T1

13



As before, working under the assumption that ω0 >> 1
T1
, 1
T2
, the longitudinal

magnetization can be neglected and the transverse magnetization approxi-
mated as: {

dMx

dt
≈ −ω0 | Mxy(r, t0) | sin(ω0t− ϕ(r, t0))e

− t−t0
T2

dMy

dt
≈ −ω0 | Mxy(r, t0) | cos(ω0t− ϕ(r, t0))e

− t−t0
T2

(2.15)

So then (2.14) becomes:

s(t) ∝ ω0

∫∫∫
V

e
− t−t0

T2 | Mxy(r, t0) |(sin(ω0t− ϕ(r, t0))Br
x(r)

+ cos(ω0t− ϕ(r, t0))Br
y(r))d

3r

(2.16)

Which can be simplified further by introducing the complex notation of the
transverse sensitivity of the receiver coil, obtaining:

s(t) ∝ ω0

∫∫∫
V

e
− t−t0

T2 | Mxy(r, t0) || Br
xy(r) | sin(ω0t+ θBr(r)

− ϕ(r, t0))d
3r

(2.17)

The signal as it is right now is dominated by the rapid oscillations of the
Larmor frequency ω0 inside the sinusoidal term. In order to eliminate those
oscillations the signal passes through an additional step called demodulation.
This step results in viewing the signal from the rotating frame of reference
instead.
To do that the signal is multiplied by sin(ω0t) one first time and then a
second time by −cos(ω0t), creating two channels, the real channel and the
imaginary channel, respectively.
Since the procedure for both is the same, here only the work on the imaginary
channel is showed. It is quite straightforward, it uses the trigonometric
identity cos(a)sin(b) = 1

2
(sin(a + b) − sin(a − b)) with a = ω0t and b =

ω0t+ θBr(r)− ϕ(r, t0), getting:

−cos(ω0t)sin(ω0t+ θBr(r)− ϕ(r, t0)) =
1

2
(sin(ϕ(r, t0)− θBr(r))

− sin(2ω0t+ θBr(r)− ϕ(r, t0)))

There still is a high-frequency sinusoidal term there, but it is removed by ap-
plying a low pass filtering. The demodulated and low pass filtered imaginary
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channel sim is defined as:

sim(t) ∝ ω0

∫∫∫
V

e
− t−t0

T2 | Mxy(r, t0) || Br
xy(r) | I(ei(ϕ(r,t0)−θBr (r)))d3r

The same goes for the real channel sre:

sre(t) ∝ ω0

∫∫∫
V

e
− t−t0

T2 | Mxy(r, t0) || Br
xy(r) | R(ei(ϕ(r,t0)−θBr (r)))d3r

So the signal collected by the receiver coil at the end is a complex signal
S(t) = sre(t) + sim(t) defined as:

S(t) ∝ ω0

∫∫∫
V

e
− t−t0

T2 | Mxy(r, t0) || Br
xy(r) | ei(ϕ(r,t0)−θBr (r))d3r

∝ ω0

∫∫∫
V

M ′
xy(r, t)B∗

xy(r)d
3r

(2.18)

Where B∗
xy(r) =| Br

xy(r) | e−iθBr (r) is the complex conjugate of Bxy(r).

Adding spatial-temporal dependencies to the precession frequency

Up until this point only ideal conditions have been considered, which works
great as a way to introduce the theory, although it might not be suited for
all the inexactitudes that might appear when performing an MRI. One of the
problems to address here is the appearance of spatial-temporal dependencies
due to inhomogeneities in the magnetic field. Implying that an isochromat
(which is a group of atoms that has the same precession frequency) is not
precessing at the Larmor frequency but:

ω(r, t) = ω0 + γBz(r, t) = ω0 +∆ω(r, t)

By definition, the phase of the transverse magnetization in the fixed labora-
tory frame is:

ϕ(r, t) = ϕ(r, t0)− ω0(t− t0)−
∫ t

t0

∆ω(r, t′)dt′

When passed to the rotating frame, the term ω0(t− t0) vanishes and we get:

ϕ(r, t) = ϕ(r, t0)−
∫ t

t0

∆ω(r, t′)dt′

15



When taking into account the spatial-temporal dependencies of ω(r, t) in-
stead of (2.18) we get:

S(t) ∝
∫∫∫

V

ω(r, t)e
− t−t0

T2 | Mxy(r, t0) || Br
xy(r) | ·

· ei(ϕ(r,t0)−
∫ t
t0

∆ω(r,t′)dt′−θBr (r))
d3r

(2.19)

It is assumed that ω(r, t) is largely dominated by ω0 so it can still be taken
from the integral, and by adding a constant Λ to represent the gain factors
due to the electronic detection system, the signal is then expressed as:

S(t) ∝ ω0Λ

∫∫∫
V

e
− t−t0

T2 | Mxy(r, t0) || Br
xy(r) | ·

· ei(ϕ(r,t0)−
∫ t
t0

∆ω(r,t′)dt′−θBr (r))
d3r

(2.20)

The signal can be represented not as being proportional to the magnetization
M but as being proportional to the proton spin density. First of all, the
transverse magnetization is rewritten as a function of the proton spin density.
To do that equations (2.3) and (2.10) are combined to obtain:

| Mxy(r, t0) |= M0(r)sin(α) = ρ0(r)
γ2ℏ2

4kT
sin(α)B0

The complex signal becomes:

S(t) ∝
∫∫∫

V

e
− t−t0

T2 ρ(r)eiϕ(r,t) =

∫∫∫
V

ρ(r, T2)e
iϕ(r,t)d3r (2.21)

Where ρ(r, T2) = e
− t−t0

T2 ρ(r) = e
− t−t0

T2 ω0Λρ0(r)
γ2ℏ2
4kT

sin(α)B0B∗
xy(r) is the ef-

fective spin density.

One of the main issues when performing a Free Induction Decay exper-
iment for MRI, is that there is no way to know where the signal is coming
from and thus it is impossible to reconstruct an image. More complex signal
sequences, like the one presented later in this section present a solution to
this problem.

Gradient Echo (GRE)

A GRE sequence relies on the use of spatially linearly varying fields, known
as gradients, after the application of a unique RF-pulse. The gradient G(t)

16



is defined as:

G(t) = Gx(t)êx +Gy(t)êy +Gz(t)êz =
∂Bz

∂x
(t)êx +

∂Bz

∂y
(t)êy +

∂Bz

∂z
(t)êz

After the RF-pulse, when accounting for this gradient, the precession fre-
quency becomes:

ω(r, t) = ω0 + γG(t) · r

And the phase in the rotating frame of reference is written as:

ϕ(r, t) = ϕ(r, t0)− γ

∫ t

t0

G(t′) · rdt′

To understand how gradients can be used to spatially localize the signal an
explanation on how to construct a basic 3D GRE sequence is done, starting
from a 1D GRE sequence and developing from there. In Figure 2.4 there is
a comparison between what to spatially encoding a signal means in terms of
coloring the voxels of a cube.

1) 1D: Frequency-encoding:
In 1D, which by convention, is done over the x-direction, the simplest
GRE sequence is composed of a single RF-pulse followed by 2 lobes of
opposite strength Gx, which localize the signal in one dimension. To
simplify and without loss of generality, the relaxation effects caused by

e
− t−t0

T2 can be ignored. Then in 1D, modifying the 3D signal expression
(2.21) means:

S(t) =

∫
ρ(x)eiϕ(x,t)dx

Where ρ(x) =
∫ ∫

ρ(r)dzdy represents the effective spin density.
When the expression of the phase with the gradient is included:

S(t) =

∫
ρ(x)ei

∫ t
0 (−γxGx(t′))dt′dx =

∫
ρ(x)e−iγx

∫ t
0 Gx(t′)dt′dx (2.22)

It can be observed that the expression of the signal in (2.22) is quite
similar to a Fourier transform, which can be achieved more clearly
once the time-dependent spatial frequency kx(t) = γ

2π

∫ t

0
Gx(t

′)dt′ are
introduced[19] [20]. With this, it is pretty clear that the signal S(kx)
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and the spin density ρ(x) can be defined as a Fourier pair:

S(kx) = ρ̂(kx) =

∫
ρ(x)e−i2πkxxdx

ρ(x) = S̃(x) =

∫
S(kx)e

i2πkxxdkx

Right now it is assumed that the signal is collected continuously, which
is never the case, a more appropriate description is to consider a signal
being sampled in a finite number of spatial frequencies during a de-
termined amount of time. Which mathematically gives the measured
signal sm as:

sm(kx) = ∆kx

N−1∑
p=0

S(p∆kx)δ(kx − p∆kx)

Where ∆kx represents the spacing between spatial frequencies. So the
reconstructed image ρr that comes from the measured signal is:

ρr(x) = s̃m(x) = ∆kx

N−1∑
p=0

S(p∆kx)e
i2πp∆kxx

Since it still is a Fourier pair, the inverse path can also be done, ob-
taining:

ρr(x) = ∆x
N−1∑
q=0

ρ(q∆x)δ(x− q∆x)

sm(kx) = ρ̂m(kx) = ∆x

N−1∑
q=0

ρ(q∆x)e−i2πq∆xkx

In the definitions, the signal is collected by moving forward along the
spatial frequency kx direction, hence why this type of encoding is called
frequency encoding.

2) 2D: Phase-encoding
This is quite straightforward, a spatial frequency ky(t) associated to

the y direction like in the 1D case is defined as ky(t) =
γ
2π

∫ t

0
Gy(t

′)dt′.
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Despite working with a 2D signal now, the steps are the same as in the
1D case, giving:

ρr(qx∆x, qy∆y) = ∆kx∆ky

Nx−1∑
px=0

Ny−1∑
py=0

sm(px∆kx, py∆ky)e
−i2π(qx∆xpx∆kx+qy∆ypy∆ky)

sm(px∆kx, py∆ky) = ∆x∆y

Nx−1∑
qx=0

Ny−1∑
qy=0

ρr(qx∆x, qy∆y)e−i2π(qx∆xpx∆kx+qy∆ypy∆ky)

The usual method to fill the k-space (which is the space of our spatial
coordinates) is the Cartesian raster-like trajectory, which consist of
firstly move along the ky direction to then collect the signal from all
the kx that are on that line. The name phase-encoding comes from
the fact that once the Gy gradient is played in order to get to the ky
of interest, each isochromat experiences a dephasing in respect to the
others depending on their position on the y-direction.

3) 3D: Volume imaging The most common approach is to perform a
second phase-encoding gradient Gz(t) along the z-direction, to do so
the spatial frequency alongside the z-direction kz(t) =

γ
2π

∫ t

0
Gz(t

′)dt′ is
defined.

Figure 2.4: Scheme to explain how to spatially encode a signal in 3D. From left to right

it shows all the processes that are being done to fully encode the signal received from a

3D object. Spatially encoding is represented by changing the color of the voxel, meaning

that the voxels sharing the same color, also share the same signal. At the end, each voxel

should have a unique color.
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2.2 Phase-contrast imaging

Phase-contrast imaging (PC-MRI) is a medical imaging technique that aims
to quantify the blood velocity. As its name suggest the idea behind this
technique relies on the usage of the additional phase shift that is caused
by the moving isochromats (e.g. blood). To understand the basics of this
method, look the expression of the phase at the position r at echo time TE

(which is the time where the signal achieves its maximum amplitude during
the readout):

ϕ(r, TE) = ϕ0 − γ

∫ TE

0

G(t) · r(t)dt (2.23)

With ϕ0 being a background phase that depends on the additional phase and
the field inhomogeneities. Since the particles are now moving, the position
r(t) of an isochromat at an arbitrary time instant texp can be expanded with
a Taylor series:

r(t) =
∞∑
n=0

r(n)(texp)

n!
(t− texp)

Inserting this expansion to the expression of the phase gives:

ϕ(r, TE) =ϕ0 − γr(texp) ·
∫ TE

0

G(t)dt− γu(texp) ·
∫ TE

0

G(t)(t− texp)dt

− γ
a(texp)

2
·
∫ TE

0

G(t)(t− texp)
2dt− ...

= ϕ0 − γr(texp) · M0 − γu(texp) · M1

− γ
a(texp)

2
· M2 − ...

Where u(texp) = (u(texp), v(texp), w(texp))
T = r′(texp), a(texp) = r′′(texp) and

Mn =
∫ TE

0
G(t)(t − texp)

ndt, denote the velocity, acceleration and n-th gra-
dient moment, respectively.
When performing PC-MRI, a practical assumption to make is that the ve-
locity is constant during a repetition time TR (which is the time that it
takes to complete a single pulse sequence), so that means u = (u, v, w)T and
a = (0, 0, 0)T .
The GRE pulse sequence described in Section 2.1.3 can be adapted with
more gradients to perform a PC-MRI. The most usual gradients forms used
to perform this are bipolar gradients, which are two lobes of inverse polarity
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but same duration, and they are played in the same direction of the velocity
we want to find. With this gradient, M0 is cancelled and only the back-
ground phase ϕ0 and M1 remains.
Since the background phase is still there and only the factor that contains
the velocity is needed, another measurement has to be taken. It usually is
the same sequence with the bipolar gradient inverted, but any sequence that
can eliminate the background phase from the previous one works.
To demonstrate how a PC-MRI works, two measurements to find the velocity
u along the x-axis have been taken. The first one ϕb(r, TE) = ϕ0 − γuM1

was the one where a bipolar gradient was applied, and the second one
ϕfc(r, TE) = ϕ0 is the one where a flow compensating gradient was used.
Then the difference between phases (hence why it is called phase-contrast)
is calculated to find an expression of u:

∆ϕ(r, TE) = ϕfc(r, TE)− ϕb(r, TE) = γu∆M1

With ∆M1 being a general way to indicate the difference between the first
order moments of both phases, although in this precise case it would only
be consisting of the moment in the phase containing the bipolar gradient. It
follows immediately that:

u =
∆ϕ(r, TE)

γ∆M1

(2.24)

The phase is simply the argument of the complex transverse magnetization,
so it is defined between the interval [−π, π], and so is the phase difference
∆ϕ(r, t). That means that the GRE sequence must be constructed so that
when performing a PC-MRI, the maximal velocity results in a phase differ-
ence of π. To do so a user-defined parameter called velocity sensitivity or
velocity encoding which requires an a priori knowledge of the expected flow
is defined as:

uenc =
π

γ∆M1

This parameter of velocity encoding can be defined in any direction, so the
velocity can be reconstructed in any direction just by creating the right se-
quence. At the end, by defining the velocity encoding for all three directions
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as VENC = (uenc, venc, wenc)
T , the velocity is reconstructed with the formula:

u =
uenc

π
∆ϕx(r, TE)

v =
venc
π

∆ϕy(r, TE)

w =
wenc

π
∆ϕz(r, TE)

(2.25)
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Chapter 3

Testing and manipulating MRI
sequences

3.1 Introduction

This chapter contains some simple examples to illustrate the theory that has
been presented in the previous chapter, which correspond to the first test-
case alongside the work that has been done to study how different trajectories
might be used when doing an MRI in order to solve some of the problems
that might appear when using the classical methods. This corresponds to the
reconstruction of GRE sequences from trajectories, so there is a quick way
of testing new trajectories and its properties without the need to directly
implement them in the code. It also presents an alternative to Cartesian
trajectories with the use of radial trajectories for the correction of motion
artifacts when doing an MRI.

3.2 Python solver example

This is a simple example in order to briefly explain how an MRI works and
what can be expected.
This example uses the Python solver that Morgane Garreau developed during
her thesis [12]. Inside this solver there are implemented the basic functions
to perform an MRI and a PC-MRI in 2D images. Since it is meant to work
as an introductory tool, many assumptions are made in order to simplify its
usage. The most important ones are:

23



� On-resonance hypothesis.

� RF-pulse is done instantaneously.

� The gradients used to construct GRE sequences change their amplitude
instantaneously.

� Absence of inhomogeneities.

Under those assumptions, the equations behind MRI are solved like in the
previous chapter.
When trying to reconstruct an image, the signal will be stored in a Ny ×Nx

matrix, where Ny corresponds to the total number of phase encoding steps
and Nx are the total of frequency encoding steps applied during a single
readout of the signal. When thinking in terms of spatial frequencies in the
k-space, Ny is the number of different ky and Nx is all the different kx.
Although it is not necessary, the signal matrix is chosen to be the same size
that the image to reconstruct, being:

SP (qx, qy) =
Nx−1∑
px=0

Ny−1∑
py=0

e
− t(qx)−t0

T2 ρP (px, py)e
−i(ϕ(px,py ,qx,qy)−ϕ0)

∀(qx, qy) ∈ Nx ×Ny

(3.1)

Where ρP (px, py) represents the exact proton density of the image, t(qx) indi-
cates the time of acquisition of the point qx and t0 is the start of the sequence
once the RF-pulse is done.
To keep it simple the Python solver only creates raster-like Cartesian GRE
sequences. Since it is a uniformly spaced Cartesian k-space, the image recon-
struction is done using the inverse fast Fourier transform algorithm which is
already implemented in the NumPy library. It goes as follows:

1) Creation of the first GRE sequence to be played: As a conven-
tion, the first sequence starts from the line that contains ky,max, it will
be changed during the filling of the k-space.

2) Obtaining the signal: Creation and filling of the signal matrix ac-
cording to (3.1).

3) Reconstructing the image: Performing an inverse fast Fourier trans-
form on the signal matrix previously filled.
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4) Performing a PC-MRI (Optional): If steps 1) to 3) are followed
for two GRE sequences that were constructed accordingly to what was
said in Section 2.2, then it is possible to perform a PC-MRI.

The image to reconstruct is the Shepp-Logan phantom [21], shown in Figure
3.1, which is a standard test image used in MRI and simulates a human
head. For our test, the image size, also known as Field-of-View (FOV) is of

Figure 3.1: Shepp-Logan phantom. It simulates a human head. With the exterior contour

being the skull, the two big ellipses simulating the ventricles, the smaller ellipses and the

circle being tumors and the rest is the gray matter [21]. To give a sense to the PC-MRI,

we will treat the circle as a vein so we can study the blood flow velocity.

256× 256 mm2 , and it has a resolution, which here means our pixel size, of
1× 1 mm2 . Resulting in an image matrix of 256× 256.
As for the PC-MRI, the grey circle between the who ellipses of the phantom
acts as a vein where a Poiseuille flow that goes along the z-direction (e.g.
normal to the image since it’s a 2D image on the xy-plane) represents the
blood flow, with no velocities or whatsoever on any other direction. A visu-
alization of the simulation is shown in Figure 3.2. To make the first GRE
sequence, a repetition time TR, which just defines the duration of a single
acquisition when doing an MRI, must be given. Here it is TR = 0.006 s.
Secondly, the addition of gradients in the sequence, it has a prephasing and
readout gradient along a flow compensating gradient in the x-direction, to
perform the frequency encoding of the signal. Before the readout gradient
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Figure 3.2: On the right, a proton density image of the Shepp-Logan phantom and on

the left, a magnitude image of the z-component for the blood flow.

(which is the gradient that is played when acquiring the signal) a phase en-
coding gradient is added in the y-direction.
To perform a PC-MRI, a second sequence almost exact to the first one but
with a bipolar gradient in the z-direction is also made. The GRE sequences
for a single TR look like the ones in Figure 3.3.

As for the PC-MRI, a previous knowledge of the type of flow is required,
here it is perfectly known, and thus, we can accurately define a velocity
encoding parameter that minimizes the errors that might appear. For that,
and knowing that the maximum velocity that the z-component can achieve
is of 25 mm/s, VENC = (0.3, 0.3, 0.3)T . The results can be seen in Figure 3.4,
and we have also added a line comparison to better observe the differences
in Figure 3.5.

The reconstructed proton density is almost exactly the same, the differ-

ence is because of the relaxation factor e
− t(qx)−t0

T2 . If not for this factor, both
images would be identical. As for the PC-MRI, although the original blood
flow is reconstructed correctly, some errors appear. It is still unclear why it
happens, a plausible explanation could be that when performing the PC-MRI
some zones carry a numerical error due to not being exactly zero and that is
reflected in the final reconstruction.
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(a) GRE sequence of reference (b) GRE sequence for the PC-MRI

Figure 3.3: GRE sequences created with the Python solver. Each line correspond to

one direction, the blue is the x-direction, the red is the y-direction and the green is the

z-direction. The first one is used as a reference and is enough for an MRI. The second

one is the one that is created when the objective is to perform a PC-MRI. It is the same

as the one on the left except for the gradient that is added alongside the velocity encoding

direction (the green one in that case).

Figure 3.4: Comparison between the original proton density and blood flow and the

reconstruction obtained when performing an MRI and a PC-MRI.
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Figure 3.5: Line comparison between the original proton density and blood flow and the

reconstruction obtained when performing an MRI and a PC-MRI.
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3.3 Obtaining a sequence from a trajectory

The introduction of spatial frequencies, as an addition to help to understand
the signal as a Fourier transform of the proton density, can also help to vi-
sualize the fact that playing a GRE sequence can be seen as moving through
the space of spatial frequencies, commonly known as k-space. This displace-
ment done during a sequence is known as a trajectory. In Figure 3.6 there
is defined a simple GRE sequence used to do an MRI. When describing it as
a trajectory in the k-space, the step by step evolution of such trajectory is
described in Figure 3.7.
The first image in Figure 3.7 corresponds to the start of the trajectory, no
gradient has been played yet so it is in the center. Once the phase-encoding
gradient is over, it correspond to a displacement along the ky-direction in
the k-space, as it is shown in the second image. The the third image shows
the position of the trajectory once the prephasing gradient has ended, since
it is a negative gradient in the x-direction, it corresponds to a negative dis-
placement in the kx-direction in the k-space. Finally the readout gradient is
played, many more points appear here since they correspond to the points in
the k-space that are being sampled for the MRI. Since it is a positive gradient
in the x-direction, the displacement occurs to the right in the kx-direction in
the k-space.
It has been noted that observing the trajectories on the k-space that a se-
quence makes could be an interesting way to study the properties of that
sequence [19] [20].

With this example it becomes clear that a trajectory can be extracted
from a sequence, but the inverse can also be done, and this section consists
of an explanation of a sequence can be created from a trajectory.
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Figure 3.6: Basic GRE sequence that can be used for MRI, it only has the gradients to

spatially encode the 2D signal. The phase-encoding gradient in the y-direction, and the

prephasing and readout gradient in the x-direction, which are the first and the second one

respectively.

Figure 3.7: Evolution of the trajectory following the sequence in Figure 3.6.
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3.3.1 Theory

Due to the huge amount of trajectories that can be found outside of the most
used methods, a general way to obtain a GRE sequence that can be played
to perform an MRI in the Python solver is shown and explained here.
A spatial frequency is defined as k:

k(t) =
γ

2π

∫ t

t0

G(t′)dt′ (3.2)

Where γ denotes the gyromagnetic ratio, t0 ∈ R+ is the starting time of the
sequence and G(t) is the gradient strength function.
From (3.2), G(t) is the derivative in time of k(t) and thus:

k′(t) =
γ

2π
G(t), ∀t ∈]0, TR[ (3.3)

A Taylor series expansion can be used in order to get an expression for k′

from k, for an arbitrary point displacement ∆t > 0 such that t+∆t ∈]0, TR[
gives:

k(t+∆t) = k(t) + ∆tk′(t) +O(|∆t|2)

k′(t) =
k(t+∆t)− k(t)

∆t
+O(|∆t|)

k′(t) ≃ k(t+∆t)− k(t)

∆t
(3.4)

Combining equations (3.3) and (3.4):

G(t) ≃ 2π

γ

k(t+∆t)− k(t)

∆t
(3.5)

To discretize (3.5) it is needed a vector of spatial frequenciesK = [k0, k1, ..., kn−1, kn] ∈
Rn. With every one of its components defined as ki = k(ti), ∀i ∈ {0, ..., n},
with ti ∈ [0, TR], ∀i ∈ {0, ..., n} such that
0 = t0 < t1 < ... < tn−1 < tn = TR. It is assumed that k0 = k(0) = k(t0) = 0
and kn = k(TR) = k(tn) = k(tn−1), which are fair assumptions since the
trajectory always starts at the center of the k-space during each repeti-
tion time and once the signal is acquired during a TR, there is no need
to keep applying a gradient field. Which means that the spatial frequency
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stays at the same place between the last signal acquisition and the TR. Us-
ing the expression (3.5) with the discretized values gives a vector of values
GV ECT = [G0, G1, ..., Gn−1, Gn] defined as:

Gi =

{
G0 = Gn = 0, if i = {0, n}
Gi =

2π
γ

ki+1−ki
ti+1−ti

, if i ∈ {1, ..., n− 1}

The constrains in G0 and Gn arise from the assumptions made on k0 and kn.
The convergence ratio of the scheme (which is of order 1) can be improved by
choosing to implement a more complex finite difference scheme. Gi ≃ G(ti)
is an approximation of the gradient strength function at time ti.
It is important to remark that in order for this method to work, each point
ki must be assigned a time ti, this can be done manually to precisely control
the sequence that is obtained.

3.3.2 Examples

Firstly, to verify that the method to generate sequences from trajectories
presented above works, a comparison between a GRE sequence generated
in the Python solver and a GRE sequence that has been created from the
trajectory issued of the first sequence is made. Both trajectories should be
identical and when doing an MRI with them, the result should be the same.
The results of such comparison are shown in Figure 3.8, both raster-like
Cartesian GRE sequence are exactly the same so it is expected for both to
work when doing an MRI.
Secondly, since the main motivation of reconstructing GRE sequences from
trajectories was to have a quick way of working with different trajectories
when doing MRI simulations in the Python solver, a radial trajectory is
constructed. And then a GRE sequence is generated for each acquisition
line of the radial trajectory. Figure 3.9 shows what a single line of a radial
trajectory and its associated GRE sequence should look like.

Figure 3.10 shows the reconstructions that are obtained from each se-
quence alongside the reference. In Figure 3.11 there is a line comparison
of said reconstructions to better observe their accuracy. For both Cartesian
sequences, the one where the gradients were generated in the Python solver
and the one where the gradients where reconstructed directly from trajecto-
ries, the result is the same, as expected.
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Figure 3.8: Figure where the reference GRE sequence (in black) and the GRE sequence

(dashed line) generated from the trajectory described by the first GRE sequence, they match

perfectly in the image.

The image reconstructed from the radial trajectory is not as good, this is
due to how radial trajectories work, with higher density of data points in
the center of the k-space, allowing for a better reconstruction of the general
shape. But with a lower density of data points in the exterior of the k-space
(e.g. the high frequencies) making it harder to have contrast in the image.
Figure 3.10 shows this, allowing us to discern the shape of the object recon-
structed, but without clear edges unlike the others.

Despite all that it is indeed possible to make sequences from trajectories,
and they can be used to perform an MRI. As previously commented, this
can be helpful when studying the benefits of certain trajectories when doing
simulations, while allowing someone to test them quickly without needing to
implement them by hand every time.
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(a) Radial trajectory from which get the GRE

sequence is obtained

(b) GRE sequence obtained from this trajec-

tory

Figure 3.9: GRE sequence that generated from a radial trajectory

Figure 3.10: Images obtained for each sequence

Figure 3.11: Line comparison of the images
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3.4 Radial trajectories for motion correction

The most used trajectory in the clinic is the raster-like Cartesian trajectory.
Where, in 2D for example, the k-space is divided by a Cartesian grid, and
the signal is collected on those points in the Cartesian grid by first getting to
its appropriate ”height” ky (which was previously defined as phase-encoding)
and then acquiring all the points of the Cartesian grid on that height. This
is the classical method and within its advantages there is the direct recon-
struction of an image by an inverse fast Fourier transform, its robustness to
certain artifacts in comparison to other methods, a lot of techniques have
been invented in order to solve some of the problems that appear when using
it, etc.
On the other hand, there are virtually an infinity of different non-Cartesian
trajectories to study, many of them might not propose any advantage over
the classical approach, but others might. Between those trajectories of inter-
est, one that has been gaining attention due to its performance under certain
circumstance in comparison with the Cartesian ones, is the radial trajectory.
When performing an acquisition using a Cartesian trajectory, not every ac-
quisition contains the same information about the object that is being im-
aged. Some acquisitions might have been done entirely on the border of the
k-space while only a few contain information of the center. This is not the
case when performing a radial acquisition, each acquisition contains the same
amount of information on the k-space, for certain situations this might be
beneficial. One of those cases where a radial acquisition arises as a better
option over the Cartesian one is when it is necessary to mitigate the artifacts
that are caused due to motion during an MRI.
Motion artifacts are a major issue in medical imaging, specially for MRI,
since due to its inherently long acquisition time, they are more propense to
happen, and if strong enough, might render the image unusable. The problem
have been approached in different ways [22], ideally, the patient should not
move, but sometimes this is just not possible. Other approaches involve the
use of different trajectories more robust to movement, such as PROPELLER
[23] or, as mentioned before, a radial sequence.

3.4.1 Theory

In order to detect and correct translation the 2D version of the Fourier slice
theorem is used, which states that a 1D slice that passes through the origin
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of the 2D Fourier transform of the image, is the Fourier pair of the projection
of the image to a 1D line that is parallel to our slice, Figure 3.12 shows a
visual explanation of the theorem. And so, if a projection of the object is

Figure 3.12: Scheme to illustrate the Fourier slice theorem, the projection p(x) of a

2D function f(r) has as Fourier transform the slice s(kx) with the same direction as the

projection of the 2D Fourier transform F (k) of the 2D function

done in the same direction of the movement, it will appear also as a transla-
tion in the projection, as shown in Figure 3.13. Thanks to the Fourier slice
theorem, if two slices parallel to those projections and passing trough the
center were extracted, (here would mean taking the kx axis since the pro-
jection were done on the x axis) the same translation would be seen when
reconstructing said projections. So with minimal information the movement
can be detected and corrected.
A control sequence (also known as a navigator) [24], which is a sequence that
will be played regularly, is used. It is always the same, so it corresponds
to the same trajectory in the k-space (here it is the same as a slice) and
with those the control sequences the projection of the image over said line
is reconstructed, if there is movement it will be detected it. With this infor-
mation the data that was affected by such movement can be corrected. It is
important to note that in order to do so it is required a previous knowledge
of the movement, in particular its direction.
Another important remark to be made is that by using this method, the ad-
vantages of the radial sampling over the Cartesian become evident. Firstly,
there is only one type of control sequence that can be used on the Cartesian
sampling, and that is the one that corresponds to the kx line, so the only
movement that can be detected is the one that happens on the x-direction, as
shown in Figure 3.14. While in radial, you can define your control sequence
in any direction on the 2D plane.
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Figure 3.13: Example of how the translation of an object affects the projection done on

a line parallel to the direction of such translation, here the object is moved 9 pixels to the

left, and the projection (which is done on the red line) has also moved 9 pixels to the left.

As a remark, only the effect that a translation of the object during an MRI
is being studied, there are obviously other movements that can cause artifacts
when reconstructing an image. Rotations and expansions/contractions are
other sources of motion artifacts. Both of those type of movements can also
be corrected when using radial trajectories to fill the k-space. For rotations,
navigators have been developed to detect them and correct them too [25],
and which combined with translations on a 3D object, the most common one
is known as the cloverleaf navigator [26].
When trying to address artifacts issued from the expansion/contraction of the
object, radial trajectories also present a clear solution, since the amplitude
of the center of the k-space, which is sampled for each trajectory, can be
compared. The trajectories that have been corrupted by that movement are
detected and corrected.
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Figure 3.14: Here the movement is done over the y-axis but the projection is done on

the x-axis, there is no difference between the projections (done on the red line), so it is

not possible the detect movement from this projection.

3.4.2 Example

To do this test-case, the Python package SigPy is used [27], it is designed to
perform high performance iterative reconstruction and common MRI recon-
struction methods and functions are already implemented there.
The movement happens during the whole acquisition time but it is assumed
that the object remains in its place during the acquisition of each line. As an
addition, it is also supposed that the patient is making an effort to stay still,
and so it is not a continuous movement that happens gradually, but more
like a sudden movement that happens at a certain time and then it stayed
there for a while before moving again. Finally, assume that the movement
happens always in the same direction and that such direction is known.
As our acquisition technique, a golden angle radial acquisition will be used,
which has become the standard when doing radial sequences due to its advan-
tages over a normal radial acquisition. In a golden angle radial acquisition,
the angle difference between each acquisition is given by the golden ration.
In Figure 3.15 the different position that the object will have during the MRI
are shown.
As indicates the red line, this movement follows the direction of the line

L = {(x, y) ∈ R2|y = −x}, and so the slice in the k-space must have the
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Figure 3.15: Illustration of the movements that will corrupt the data acquired during the

MRI, the first third is done with the object staying in place, the second third is done with

the object being moved 20 pixels to the left and down with respect to the origin, and in the

last the object is displaced 22 pixels to the right and up with respect to the origin.

same direction. It follows naturally to define the control sequence as shown
in Figure 3.16.
The control sequence will be played every 13 acquisitions, and so it acts as

Figure 3.16: Control sequence used to detect the movement and correct it.

an indicator of the position of the object for the 13 acquisitions that follow
the control sequence. With that, in Figure 3.17 there is a comparison of the
reconstructed image with and without the motion correction.
Without correction, as shown in Figure 3.17, the object is repeated in the
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Figure 3.17: Comparison of the image reconstructed with and without motion correc-

tion, without motion correction the object appears on the other positions that it has been

measured, while with motion correction those apparitions disappear, giving a more clear

image.

three distinct positions that it was measured. It is expected from a radial tra-
jectory since each acquisition time contains the same amount of information
and it was measured almost the same amount of acquisitions in each position,
so it is natural for the image to look like that. When looking at the image
with the motion correction applied, the repeated images disappeared but the
new image is not as good. The general shape is properly reconstructed and
when there is a high contrast between the objects (such as in the skull or the
ventricles with the gray matter) those are still observable in the image. But
the tumors become much more difficult to find.
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Chapter 4

Discussion and moving forward

4.1 Discussion

As already mentioned at the beginning this report is meant to act as an
introduction to the theory behind MRI. As such the test-cases showed here
are simplifications that aim to showcase some properties of MRI and problems
that one might find when doing it, and the techniques that might be used
to address such problems. As it has already been said, MRI is complex, and
some of the problems that were found when doing the test cases might be
caused due to my own lack of deep understanding of the subject, such as the
apparition of extra dephasing with its consequent velocity that should not
be here, or the difficulties when reconstructing more complex images as the
Shepp-Logan phantom with radial trajectories.

4.2 Moving forward

The idea of this internship to gain a proper understanding on what is being
done here at the IMAG on the subject of in silico MRI. To do so, it is
important to know how an MRI works and to learn to use the Yales2BIO
solver, which is used to perform such technique. So the idea is to continue to
keep studying the techniques that can be used alongside radial trajectories in
order to encode movement/flow information to preform an MRI or PC-MRI,
and gain more practice with the solver. Once the internship is over, it will be
followed with a thesis financed by the ANR under the supervision of Monica
Sigovan, a research scientist working at CREATIS in Lyon.
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